题目内容

3.在等比数列{an}中,已知a3=2,a3+a5+a7=26,则a7=(  )
A.12B.18C.24D.36

分析 设等比数列{an}的公比为q,a3=2,a3+a5+a7=26,可得:${a}_{1}{q}^{2}$=2,${a}_{3}(1+{q}^{2}+{q}^{4})$=26,即2(1+q2+q4)=26,联立解出.

解答 解:设等比数列{an}的公比为q,∵a3=2,a3+a5+a7=26,
∴${a}_{1}{q}^{2}$=2,${a}_{3}(1+{q}^{2}+{q}^{4})$=26,即2(1+q2+q4)=26,
解得:q2=3,a1=$\frac{2}{3}$.
则a7=$\frac{2}{3}×{3}^{3}$=18.
故选:B.

点评 本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网