题目内容

9.设抛物线E:y2=2px(p>0)上的点M(x0,4)到焦点F的距离|MF|=$\frac{5}{4}$x0
(Ⅰ)求抛物线E的方程;
(Ⅱ)如图,直线l:y=k(x+2)与抛物线E交于A,B两点,点A关于x轴的对称点是C,求证:直线BC恒过一定点.

分析 (Ⅰ)根据抛物线的性质得出x0+$\frac{p}{2}$=$\frac{5}{4}$x0,得出M的坐标,代入抛物线方程求出p即可;
(Ⅱ)直线方程与抛物线方程联立,求出直线BC方程,即可得出结论.

解答 (Ⅰ)解:∵|MF|=x0+$\frac{p}{2}$=$\frac{5}{4}$x0,∴x0=2p.即M(2p,4).
把M(2p,4)代入抛物线方程得4p2=16,解得p=2.
∴抛物线Γ的方程为y2=4x.
(Ⅱ)证明:由题意,设A(x1,y1),B(x2,y2),C(x1,-y1) (x1≠x2).
由直线代入抛物线方程,消y整理得ky2-4y+8k=0,
则y1y2=8.
直线BC:y+y1=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x1)=$\frac{4}{{y}_{2}-{y}_{1}}$(x-x1),
所以y=$\frac{4}{{y}_{2}-{y}_{1}}$(x-x1$\frac{{y}_{2}{y}_{1}-{{y}_{1}}^{2}}{4}$)-,
所以y=$\frac{4}{{y}_{2}-{y}_{1}}$(x-2).
∴直线BC恒过定点(2,0).

点评 本题考查抛物线的方程,考查抛物线的简单几何性质、直线与圆锥曲线的综合问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网