题目内容

若动圆与圆(x+2)2+y2=4外切且与直线x=2相切,则动圆圆心的轨迹方程是(  )
A、y2-12x+12=0
B、y2+12x-12=0
C、y2+8x=0
D、y2-8x=0
考点:轨迹方程
专题:圆锥曲线的定义、性质与方程
分析:令动圆圆心P的坐标为(x,y),C1(-2,0),动圆得半径为r,则根据两圆相外切及直线与圆相切得性质可得P(x,y)到C1(-2,0)与直线x=4的距离相等,化简可求.
解答: 解:设圆(x+2)2+y2=4的圆心C1(-2,0),动圆圆心P的(x,y),半径为r,作
x=4,x=2,PQ⊥直线x=4,Q为垂足,因圆P与x=2相切,故圆P到直线x=4的距离PQ=r+2,又PC1=r+2,
因此P(x,y)到C1(-2,0)与直线x=4的距离相等,P的轨迹为抛物线,焦点为C1(-2,0),准线x=4,
顶点为(1,0),
开口向右,可得P=6,方程为:y2=-12(x-1).
故选:B.
点评:本题主要考查了点的轨迹方程的求解,解题的关键是根据两圆相外切及直线与圆相切得性质得轨迹为抛物线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网