题目内容
3.已知集合A={x|-1≤x≤3},B={x|x=2n-1.n∈Z},则A∩B=( )| A. | {1,3} | B. | {0,2} | C. | {1} | D. | {-1,1,3} |
分析 由A与B,求出两集合的交集即可.
解答 解:∵集合A={x|-1≤x≤3},B={x|x=2n-1.n∈Z},
∴A∩B={-1,1,3},
故选:D
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
13.已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为( )
| A. | 5 | B. | $\sqrt{5}$ | C. | 9 | D. | 3 |
18.已知双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是( )
| A. | 4$\sqrt{3}$ | B. | 3$\sqrt{13}$ | C. | $\sqrt{14}$ | D. | 2$\sqrt{3}$ |
8.为加强对旅游景区的规范化管理,确保旅游业健康持续发展,某市旅游局2016年国庆节期间,在某旅游景点开展了景区服务质量评分问卷调查,调查情况统计如表:
该旅游局规定,将游客的评分分为三个等级,评分在[0,60)的视为差评,在[60,85)的视为中评,在[85,100)的视为好评,现从上述600名游客中,依据游客评价的等级进行分层抽样,选取了6名游客,以备座谈采访之用.
(Ⅰ)若从上述6名游客中,随机选取一名游客进行采访,求该游客的评分不低于60分的概率;
(Ⅱ)若从上述6名游客中,随机选取两名游客进行座谈,求这两名游客的评价全为“好评”的概率.
| 分数分组 | 游客人数 |
| [0,60) | 100 |
| [60,85) | 200 |
| [85,100] | 300 |
| 总计 | 600 |
(Ⅰ)若从上述6名游客中,随机选取一名游客进行采访,求该游客的评分不低于60分的概率;
(Ⅱ)若从上述6名游客中,随机选取两名游客进行座谈,求这两名游客的评价全为“好评”的概率.