题目内容
已知向量
=(
sin
,1),
=(cos
,cos2
)
(1)若
•
=1,求sin(-2x+
)的值;
(2)记f(x)=
•
,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
| m |
| 3 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
(1)若
| m |
| n |
| π |
| 6 |
(2)记f(x)=
| m |
| n |
考点:平面向量数量积的运算,余弦定理
专题:计算题,三角函数的求值
分析:(1)利用向量数量积的运算,由
•
=1得出sin(
+
)=
,
+
=2kπ+
或
+
=2kπ+
,k∈Z,
得出-2x+
的值,再进行.
(2)由(2a-c)cosB=bcosC,由正弦定理得出(2sinA-sinC)cosB=sinBcosC,整理化简得cosB=
,B=
.A∈(0,
),f(A)的取值范围可求.
| m |
| n |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| x |
| 2 |
| π |
| 6 |
| π |
| 6 |
| x |
| 2 |
| π |
| 6 |
| 5π |
| 6 |
得出-2x+
| π |
| 6 |
(2)由(2a-c)cosB=bcosC,由正弦定理得出(2sinA-sinC)cosB=sinBcosC,整理化简得cosB=
| 1 |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
解答:
解:(1)由
•
=1,得
sin
cos
+cos2
=1,即
sin
+
cos
=
,得sin(
+
)=
,
∴
+
=2kπ+
或
+
=2kπ+
,k∈Z,
∴-2x+
=-8kπ+
,或-2x+
=-8kπ-
,
sin(-2x+
)=sin(-8kπ+
)=
或sin(-2x+
)=sin(-8kπ-
)=-
.
(2)由(1)f(x)=
•
=sin(
+
)+
,
∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC
即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,∴cosB=
,B=
.A∈(0,
),
f(A)=sin(
+
)+
,
∵
+
∈(
,
)
∴f(A)∈(1,
).
| m |
| n |
| 3 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
| ||
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
∴
| x |
| 2 |
| π |
| 6 |
| π |
| 6 |
| x |
| 2 |
| π |
| 6 |
| 5π |
| 6 |
∴-2x+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 4π |
| 3 |
sin(-2x+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
或sin(-2x+
| π |
| 6 |
| 4π |
| 3 |
| ||
| 2 |
(2)由(1)f(x)=
| m |
| n |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC
即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,∴cosB=
| 1 |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
f(A)=sin(
| A |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
∵
| A |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
∴f(A)∈(1,
| 3 |
| 2 |
点评:本题考查三角函数公式的应用,三角函数值求解.结合向量,正弦定理.
练习册系列答案
相关题目