题目内容

15.$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{99×100}$=(  )
A.-$\frac{99}{100}$B.$\frac{99}{100}$C.-$\frac{100}{99}$D.$\frac{100}{99}$

分析 化简数列的通项公式,利用裂项消项法求解数列的和即可.

解答 解:因为$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
所以$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{99×100}$=1$-\frac{1}{2}$$+\frac{1}{2}-\frac{1}{3}$$+\frac{1}{3}$$-\frac{1}{4}$+…+$\frac{1}{99}$$-\frac{1}{100}$
=1-$\frac{1}{100}$
=$\frac{99}{100}$.
故选:B.

点评 本题考查裂项消项法求和的方法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网