题目内容

19.在区间[0,1]上随机取两个实数a、b,则函数$f(x)=\frac{1}{2}{x^3}+ax-b$在区间[0,1]上有且只有一个零点的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

分析 由题意知本题是一个几何概型,根据所给的条件很容易做出试验发生包含的事件对应的面积,而满足条件的事件是函数f(x)=$\frac{1}{2}$x3+ax-b在区间[0,1]上有且仅有一个零点,求出导函数,看出函数是一个增函数,有零点等价于在自变量区间的两个端点处函数值符号相反,得到条件,做出面积,根据几何概型概率公式得到结果.

解答 解:由题意知本题是一个几何概型,
∵a∈[0,1],
∴f'(x)=1.5x2+a≥0,
∴f(x)是增函数,
若在[0,1]有且仅有一个零点,则f(0)•f(1)≤0,
∴-b•(0.5+a-b)≤0,
即b(0.5+a-b)≥0,
∴b≤a+0.5,
由线性规划内容知全部事件的面积为1×1=1,满足条件的面积为1-$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=$\frac{7}{8}$,
∴概率P=$\frac{7}{8}$,
故选:D.

点评 本题是一个几何概型,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网