题目内容
给定函数①y=,②y= (x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数的序号是( )
(A)①② (B)②③
(C)③④ (D)①④
B
如图,椭圆C:+=1(a>b>0)经过点P,离心率e=,直线l的方程为x=4.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.
已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若=,设cn=,求数列{cn}的前n项和Tn.
在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则的值是( )
(A) (B) (C) (D)
若数列{an}满足a1=2且an+an-1=2n+2n-1,Sn为数列{an}的前n项和,则log2(S2012+2)等于( )
(A)2013 (B)2012 (C)2011 (D)2010
已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(a)≤2f(1),则a的取值范围是( )
(A)[1,2] (B) (C) (D)(0,2]
已知f(x)为奇函数,g(x)=f(x)+9,g(-2)=3,则f(2)= .
已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0且a≠1),若g(2)=a,则f(2)等于( )
(A)2 (B)
(C) (D)a2
O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为( )
(A)2 (B)2 (C)2 (D)4