题目内容
5.化简:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=-tan$\frac{θ}{2}$.分析 利用利用二倍角公式化简所给的式子,可得结果.
解答 解:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=$\frac{1-(1-{2sin}^{2}\frac{θ}{2})-2sin\frac{θ}{2}cos\frac{θ}{2}}{1+{2cos}^{2}\frac{θ}{2}-1-2sin\frac{θ}{2}cos\frac{θ}{2}}$
=$\frac{2sin\frac{θ}{2}(sin\frac{θ}{2}-cos\frac{θ}{2})}{2cos\frac{θ}{2}(cos\frac{θ}{2}-sin\frac{θ}{2})}$=-tan$\frac{θ}{2}$,
故答案为:-tan$\frac{θ}{2}$.
点评 本题主要考查利用二倍角公式进行化简求值,属于基础题.
练习册系列答案
相关题目
16.设i为虚数单位,n为正整数,θ∈[0,2π).
(1)用数学归纳法证明:(cosθ+isinθ)n=cosnθ+isinnθ;
(2)已知$z=\sqrt{3}-i$,试利用(1)的结论计算z10.
(1)用数学归纳法证明:(cosθ+isinθ)n=cosnθ+isinnθ;
(2)已知$z=\sqrt{3}-i$,试利用(1)的结论计算z10.
14.已知函数满足一下两个条件:①任意x1,x2∈(0,+∞),且x1≠x2时,(x1-x2)[f(x1)-f(x2)]<0;②对定义域内任意x有f(x)+f(-x)=0,则符合条件的函数是( )
| A. | f(x)=2x | B. | f(x)=1-|x| | C. | $f(x)=\frac{1}{x}-x$ | D. | f(x)=ln(x+1) |
1.对函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值叫做函数f(x)的下确界.现已知定义在R上的偶函数f(x)满足f(1-x)=f(1+x),当x∈[0,1]时,f(x)=-3x2+2,则f(x)的下确界为( )
| A. | 2 | B. | 1 | C. | -2 | D. | -1 |
14.设集合M={-1,1},N={x|$\frac{1}{x}$<2},则下列结论正确的是( )
| A. | N⊆M | B. | M⊆N | C. | M∩N=N | D. | M∩N={1} |
15.设偶函数y=2sin(ωx+φ)(ω>0,0<φ<π)的图象与直线y=2的某两个交点的横坐标分别为x1,x2,若|x2-x1||的最小值为π,则该函数在下列哪个区间上单调递增( )
| A. | (0,$\frac{π}{2}$) | B. | (-$\frac{π}{4}$,$\frac{π}{4}$) | C. | (-$\frac{π}{2}$,-$\frac{π}{4}$) | D. | ($\frac{π}{4}$,$\frac{3π}{4}$) |