题目内容
两个等差数列{an}和{bn},前n项和分别为Sn,Tn,且
=
,则
=( )
| Sn |
| Tn |
| 9n+36 |
| n+4 |
| a2+a20 |
| b7+b15 |
| A、9 | ||
B、
| ||
C、
| ||
D、
|
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:利用等差数列通项的性质,结合等差数列的前n项和公式,即可得出结论.
解答:
解:由题意,
=
=
=
=9,
故选:A.
| a2+a20 |
| b7+b15 |
| ||
|
| S21 |
| T21 |
| 9×21+36 |
| 21+4 |
故选:A.
点评:本题考查等差数列通项的性质、等差数列的前n项和公式,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
已知函数f(x)=
,则f(4)=( )
|
| A、3 | B、7 | C、6 | D、5 |
在①1⊆{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④φ?{0}上述四个关系中,错误的个数是( )
| A、1个 | B、2个 | C、3个 | D、4个 |