ÌâÄ¿ÄÚÈÝ
£¨1£©¶ÔÓÚÕâ20ÖêÊ÷Ã磬Èç¹ûÓ÷ֲã³éÑùµÄ·½·¨´Ó¡°Éú³¤Á¼ºÃ¡±ºÍ¡°·ÇÉú³¤Á¼ºÃ¡±Öй²³éÈ¡5Ö꣬ÔÙ´ÓÕâ5ÖêÖÐÈÎÑ¡2Ö꣬ÄÇôÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄ¸ÅÂÊÊǶàÉÙ£¿
£¨2£©Èô´ÓËùÓС°Éú³¤Á¼ºÃ¡±ÖÐÑ¡2Ö꣬ÇóËùÑ¡ÖеÄÊ÷Ãç¶¼ÄܳöÊ۵ĸÅÂÊ£®
¿¼µã£º¹Åµä¸ÅÐͼ°Æä¸ÅÂʼÆË㹫ʽ,·Ö²ã³éÑù·½·¨
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©¸ù¾Ý¾¥Ò¶Í¼£¬¿ÉÖª¡°Éú³¤Á¼ºÃ¡±ÓÐ8Ö꣬¡°·ÇÉú³¤Á¼ºÃ¡±µÄÓÐ12Ö꣬Ó÷ֲã³éÑùµÄ·½·¨£¬Çó³ö¡°Éú³¤Á¼ºÃ¡±ºÍ¡°·ÇÉú³¤Á¼ºÃ¡±µÄÖêÊý£¬ÀûÓöÔÁ¢Ê¼þµÄ¸ÅÂÊ£¬¼´¿ÉÇó³öÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄ¸ÅÂÊ£»
£¨2£©¸ù¾Ý×éºÏÊý¹«Ê½Ò׵ôÓËùÓС°Éú³¤Á¼ºÃ¡±ÖÐÑ¡2ÖêµÄʼþ¹²28¸ö£¬ÆäÖÐÊ÷Ãç¶¼ÄܳöÊ۵Ļù±¾Ê¼þÓÐ3¸ö£¬¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã¼´¿É£®
£¨2£©¸ù¾Ý×éºÏÊý¹«Ê½Ò׵ôÓËùÓС°Éú³¤Á¼ºÃ¡±ÖÐÑ¡2ÖêµÄʼþ¹²28¸ö£¬ÆäÖÐÊ÷Ãç¶¼ÄܳöÊ۵Ļù±¾Ê¼þÓÐ3¸ö£¬¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã¼´¿É£®
½â´ð£º
½â£º£¨1£©¸ù¾Ý¾¥Ò¶Í¼£¬¿ÉÖª¡°Éú³¤Á¼ºÃ¡±ÓÐ8Ö꣬¡°·ÇÉú³¤Á¼ºÃ¡±µÄÓÐ12Ö꣬
Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡£¬Ã¿Öê±»³éÈ¡µÄ¸ÅÂÊÊÇ
=
£¬
´Ó¡°Éú³¤Á¼ºÃ¡±Öй²³éÈ¡8¡Á
=2Ö꣬
¡°·ÇÉú³¤Á¼ºÃ¡±µÄÓÐ12¡Á
=3Ö꣮
Éè¡°Éú³¤Á¼ºÃ¡±µÄÁ½ÖêΪ1£¬2£®¡°·ÇÉú³¤Á¼ºÃ¡±µÄ3ÖêΪa£¬b£¬c£®
ÔòËùÓеĻù±¾Ê¼þÓУº
£¨1£¬2£©£¬£¨1£¬a£©£¬£¨1£¬b£©£¬£¨1£¬c£©£¬
£¨2£¬a£©£¬£¨2£¬b£©£¬£¨2£¬c£©£¬
£¨a£¬b£©£¬£¨a£¬c£©£¬
£¨b£¬c£©¹²ÓÐ10ÖÖ£¬
ÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄʼþÓÐ7¸ö
¡àÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄ¸ÅÂÊÊÇP=
£®
£¨2£©ÒÀÌâÒ⣬һ¹²ÓÐ8ÖêÉú³¤Á¼ºÃ£¬ÆäÖÐAÓÐ5Ö꣬BÓÐ3Ö꣬
ËùÓпÉÄܵĻù±¾Ê¼þ¹²ÓÐ
=
=28¸ö£¬
Ê÷Ãç¶¼ÄܳöÊÛµÄʼþ°üº¬µÄ»ù±¾Ê¼þΪ
=3¸ö£¬
¡àËùÇó¸ÅÂÊΪP=
£®
Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡£¬Ã¿Öê±»³éÈ¡µÄ¸ÅÂÊÊÇ
| 5 |
| 20 |
| 1 |
| 4 |
´Ó¡°Éú³¤Á¼ºÃ¡±Öй²³éÈ¡8¡Á
| 1 |
| 4 |
¡°·ÇÉú³¤Á¼ºÃ¡±µÄÓÐ12¡Á
| 1 |
| 4 |
Éè¡°Éú³¤Á¼ºÃ¡±µÄÁ½ÖêΪ1£¬2£®¡°·ÇÉú³¤Á¼ºÃ¡±µÄ3ÖêΪa£¬b£¬c£®
ÔòËùÓеĻù±¾Ê¼þÓУº
£¨1£¬2£©£¬£¨1£¬a£©£¬£¨1£¬b£©£¬£¨1£¬c£©£¬
£¨2£¬a£©£¬£¨2£¬b£©£¬£¨2£¬c£©£¬
£¨a£¬b£©£¬£¨a£¬c£©£¬
£¨b£¬c£©¹²ÓÐ10ÖÖ£¬
ÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄʼþÓÐ7¸ö
¡àÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄ¸ÅÂÊÊÇP=
| 7 |
| 10 |
£¨2£©ÒÀÌâÒ⣬һ¹²ÓÐ8ÖêÉú³¤Á¼ºÃ£¬ÆäÖÐAÓÐ5Ö꣬BÓÐ3Ö꣬
ËùÓпÉÄܵĻù±¾Ê¼þ¹²ÓÐ
| C | 2 8 |
| 8¡Á7 |
| 2¡Á1 |
Ê÷Ãç¶¼ÄܳöÊÛµÄʼþ°üº¬µÄ»ù±¾Ê¼þΪ
| C | 2 3 |
¡àËùÇó¸ÅÂÊΪP=
| 3 |
| 28 |
µãÆÀ£º±¾Ì⿼²éÁ˾¥Ò¶Í¼¼°Óɾ¥Ò¶Í¼ÇóÊý¾ÝµÄ·ÖÎö£¬¿¼²éÁ˹ŵä¸ÅÐ͵ĸÅÂʼÆË㣬½â´ð±¾ÌâµÄ¹Ø¼üÊǶÁ¶®¾¥Ò¶Í¼£®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¸øŒçËĸöÃüÌ⣺
£¨1£©ÈôÒ»¸ö½ÇµÄÁ½±ß·Ö±ðƽÐÐÓÚÁíÒ»¸ö½ÇµÄÁ½±ß£¬ÔòÕâÁ½¸ö½ÇÏàµÈ£»
£¨2£©¦Á£¬¦Â ΪÁ½¸ö²»Í¬Æ½Ã棬ֱÏßa?¦Á£¬Ö±Ïßb?¦Á£¬ÇÒa¡Î¦Â£¬b¡Î¦Â£¬Ôò¦Á¡Î¦Â£»
£¨3£©¦Á£¬¦Â ΪÁ½¸ö²»Í¬Æ½Ã棬ֱÏßm¡Í¦Á£¬m¡Í¦Â Ôò¦Á¡Î¦Â£»
£¨4£©¦Á£¬¦Â ΪÁ½¸ö²»Í¬Æ½Ã棬ֱÏßm¡Î¦Á£¬m¡Î¦Â£¬Ôò¦Á¡Î¦Â£®
ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
£¨1£©ÈôÒ»¸ö½ÇµÄÁ½±ß·Ö±ðƽÐÐÓÚÁíÒ»¸ö½ÇµÄÁ½±ß£¬ÔòÕâÁ½¸ö½ÇÏàµÈ£»
£¨2£©¦Á£¬¦Â ΪÁ½¸ö²»Í¬Æ½Ã棬ֱÏßa?¦Á£¬Ö±Ïßb?¦Á£¬ÇÒa¡Î¦Â£¬b¡Î¦Â£¬Ôò¦Á¡Î¦Â£»
£¨3£©¦Á£¬¦Â ΪÁ½¸ö²»Í¬Æ½Ã棬ֱÏßm¡Í¦Á£¬m¡Í¦Â Ôò¦Á¡Î¦Â£»
£¨4£©¦Á£¬¦Â ΪÁ½¸ö²»Í¬Æ½Ã棬ֱÏßm¡Î¦Á£¬m¡Î¦Â£¬Ôò¦Á¡Î¦Â£®
ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢£¨1£© | B¡¢£¨2£© |
| C¡¢£¨3£© | D¡¢£¨4£© |
Éèa£¾0£¬b£¾0£¬c£¾0ÏÂÁв»µÈ¹ØÏµ²»ºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A¡¢c3+c+1£¾c2+
| ||||
| B¡¢|a-b|¡Ü|a-c|+|b-c| | ||||
C¡¢Èôa+4b=1£¬Ôò
| ||||
| D¡¢ax2+bx+c¡Ý0£¨x¡ÊR£© |