题目内容

20.已知O是△ABC所在平面上的一点,若$\overrightarrow{PO}$=$\frac{1}{3}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)(其中P为平面上任意一点),则O点是△ABC的(  )
A.外心B.内心C.重心D.垂心

分析 将$\overrightarrow{PA}=\overrightarrow{PO}+\overrightarrow{OA},\overrightarrow{PB}=\overrightarrow{PO}+\overrightarrow{OB}$,$\overrightarrow{PC}=\overrightarrow{PO}+\overrightarrow{OC}$带入$\overrightarrow{PO}=\frac{1}{3}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC})$化简即可得出$\overrightarrow{OA}+\overrightarrow{OB}=-\overrightarrow{OC}$,可取AB的中点D,然后连接OD,从而可得到$2\overrightarrow{OD}=-\overrightarrow{OC}$,从而可得出点D,O,C三点共线,且O点在D,C点之间,|OC|=2|OD|,从而便得出O点为△ABC的重心.

解答 解:由$\overrightarrow{PO}=\frac{1}{3}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC})$得,$\overrightarrow{PO}=\frac{1}{3}(\overrightarrow{PO}+\overrightarrow{OA}+\overrightarrow{PO}+\overrightarrow{OB}+\overrightarrow{PO}+\overrightarrow{OC})$=$\overrightarrow{PO}+\frac{1}{3}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})$;
∴$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$;
即$\overrightarrow{OA}+\overrightarrow{OB}=-\overrightarrow{OC}$,取AB中点D,连接OD,如图所示,则:
$\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OD}=-\overrightarrow{OC}$;
∴D,O,C三点共线,且|OC|=2|OD|;
∴O点为△ABC的重心.
故选C.

点评 考查向量加法的几何意义,以及向量的数乘运算,向量加法的平行四边形法则,共线向量基本定理,以及向量数乘的几何意义,三角形重心的概念及性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网