题目内容
18.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,则$tan(θ-\frac{π}{4})$=( )| A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
分析 由θ得范围求得θ+$\frac{π}{4}$的范围,结合已知求得cos(θ+$\frac{π}{4}$),再由诱导公式求得sin($\frac{π}{4}$-θ)及cos($\frac{π}{4}$-θ),进一步由诱导公式及同角三角函数基本关系式求得tan(θ-$\frac{π}{4}$)的值.
解答 解:∵θ是第四象限角,
∴-$\frac{π}{2}$+2kπ<θ<2kπ,则-$\frac{π}{4}$+2kπ<θ+$\frac{π}{4}$<$\frac{π}{4}$+2kπ,k∈Z,
又sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,
∴cos(θ+$\frac{π}{4}$)=$\sqrt{1-si{n}^{2}(θ+\frac{π}{4})}$=$\frac{4}{5}$.
∴cos($\frac{π}{4}$-θ)=sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,sin($\frac{π}{4}$-θ)=cos(θ+$\frac{π}{4}$)=$\frac{4}{5}$.
∴tan(θ-$\frac{π}{4}$)=-tan($\frac{π}{4}$-θ)=-$\frac{sin(\frac{π}{4}-θ)}{cos(\frac{π}{4}-θ)}$=-$\frac{\frac{4}{5}}{\frac{3}{5}}$=-$\frac{4}{3}$.
故选:D.
点评 本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.
练习册系列答案
相关题目
13.
某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
( I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
( II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
( III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
( I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
( II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
( III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
| 喜欢阅读国学类 | 不喜欢阅读国学类 | 合计 | |
| 男 | 14 | 4 | 18 |
| 女 | 8 | 14 | 22 |
| 合计 | 22 | 18 | 40 |
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
| P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
8.已知函数f(x)=x2+m与函数g(x)=-ln$\frac{1}{x}-3x({x∈[{\frac{1}{2},2}]})$的图象上恰有两对关于x轴对称的点,则实数m的取值范围是( )
| A. | $[{\frac{5}{4}+ln2,2})$ | B. | $[{2-ln2,\frac{5}{4}+ln2})$ | C. | $({\frac{5}{4}+ln2,2-ln2}]$ | D. | (2-ln2,2] |