ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®£¨¢ñ£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌÓëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©µãP¡¢Q·Ö±ðÔÚÖ±ÏßlºÍÔ²CÉÏÔ˶¯£¬Çó|PQ|µÄ×îСֵ£®
·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£ºÖ±ÏßlµÄÆÕͨ·½³Ì£®Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÔ²CµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£© ÓÉÆ½Ã漸ºÎ֪ʶ֪£º×îСֵΪԲÐÄCµ½lµÄ¾àÀë¼õ°ë¾¶£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÔ²ÐÄCµ½lµÄ¾àÀëd£®
½â´ð ½â£º£¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£ºÖ±ÏßlµÄÆÕͨ·½³ÌΪx-y+1=0£®
Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÔ²CµÄÖ±½Ç×ø±ê·½³Ì£º£¨x-1£©2+y2=1£®
£¨¢ò£© ÓÉÆ½Ã漸ºÎ֪ʶ֪£º×îСֵΪԲÐÄCµ½lµÄ¾àÀë¼õ°ë¾¶£¬¡ßÔ²Ðĵ½Ö±ÏߵľàÀë$d=\frac{{|{1+1}|}}{{\sqrt{2}}}=\sqrt{2}$£®
¡à|PQ|µÄ×îСֵΪ$\sqrt{2}-1$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{4}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $\frac{¦Ð}{2}$ |
| A£® | $\frac{3}{4}$ | B£® | $-\frac{3}{4}$ | C£® | $\frac{4}{3}$ | D£® | $-\frac{4}{3}$ |
| A£® | 0 | B£® | $\frac{1}{2}$ | C£® | $\frac{\sqrt{2}}{2}$ | D£® | 1 |
| A£® | 1007 | B£® | 3025 | C£® | 2017 | D£® | 3024 |
| A£® | £¨-4£¬2£© | B£® | £¨-2£¬4£© | C£® | £¨2£¬+¡Þ£© | D£® | £¨-¡Þ£¬-4£© |
| A£® | $\sqrt{2}$ | B£® | $\frac{\sqrt{10}}{2}$ | C£® | 2 | D£® | $\frac{5}{2}$ |
| Äê·Ý | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| ÄêÐû´«·Ñx£¨ÍòÔª£© | 38 | 48 | 58 | 68 | 78 | 88 |
| ÄêÏúÊÛÁ¿y£¨¶Ö£© | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
| $\sum_{i=1}^{6}$£¨lnxi•lnyi£© | $\sum_{i=1}^{6}$£¨lnxi£© | $\sum_{i=1}^{6}$£¨lnyi£© | $\sum_{i=1}^{6}$£¨lnxi£©2 |
| 75.3 | 24.6 | 18.3 | 101.4 |
£¨¢ò£©¹æ¶¨µ±²úÆ·µÄÄêÏúÊÛÁ¿y£¨µ¥Î»£º¶Ö£©ÓëÄêÐû´«·Ñx£¨µ¥Î»£ºÍòÔª£©µÄ±ÈÖµÔÚÇø¼ä£¨$\frac{e}{9}$£¬$\frac{e}{7}$£©ÄÚʱÈÏΪ¸ÃÄêÐ§ÒæÁ¼ºÃ£®ÏÖ´ÓÕâ6ÄêÖÐÈÎÑ¡3Ä꣬¼ÇÆäÖÐÑ¡µ½Ð§ÒæÁ¼ºÃµÄÊýÁ¿Îª¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®£¨ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬e¡Ö2.7183£©
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨u1£¬v1£©£¬£¨u2£¬v2£©£¬¡£¬£¨un£¬vn£©£¬Æä»Ø¹éÖ±Ïßv=¦Â•u+aÖеÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ£º$\widehat{¦Â}$=$\frac{\sum_{i=1}^{n}£¨{u}_{i}•{v}_{i}£©-n£¨\overline{u}•\overline{v}£©}{{\sum_{i=1}^{n}u}_{i}^{2}-n£¨\overline{u}£©^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{v}$-$\stackrel{¡Ä}{¦Â}$•$\overline{u}$£®