ÌâÄ¿ÄÚÈÝ
5£®º£Ë®ÊÜÈÕÔµÄÒýÁ¦£¬ÔÚÒ»¶¨µÄʱºò·¢ÉúÕÇÂäµÄÏÖÏó½Ð³±£¬Ò»°ãµØ£¬Ôç³±½Ð³±£¬Íí³±½ÐÏ«£®ÔÚͨ³£Çé¿öÏ£¬´¬ÔÚÕdz±Ê±Ê»½øº½µÀ£¬¿¿½üÂëÍ·£»Ð¶»õºó£¬ÔÚÂ䳱ʱ·µ»Øº£Ñó£®ÏÂÃæÊÇij¸Û¿ÚÔÚij¼¾½ÚÿÌìµÄʱ¼äÓëË®Éî¹ØÏµ±í£º| ʱ¿Ì | 2£º00 | 5£º00 | 8£º00 | 11£º00 | 14£º00 | 17£º00 | 20£º00 | 23£º00 |
| Ë®ÉÃ×£© | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý£¬Çó³öº¯Êýf£¨t£©=Asin£¨¦Øt+ϕ£©+bµÄ±í´ïʽ£»
£¨2£©Ò»Ìõ»õ´¬µÄ³ÔË®Éî¶È£¨´¬µ×ÓëË®ÃæµÄ¾àÀ룩Ϊ4.25Ã×£¬°²È«ÌõÀý¹æ¶¨ÖÁÉÙÒªÓÐ2Ã׵ݲȫ¼ä϶£¨´¬µ×ÓëÑóµ×µÄ¾àÀ룩£¬¸Ã´¬ÔÚÒ»ÌìÄÚ£¨0£º00¡«24£º00£©ºÎʱÄܽøÈë¸Û¿ÚÈ»ºóÀ뿪¸Û¿Ú£¿Ã¿´ÎÔÚ¸Û¿ÚÄÜÍ£Áô¶à¾Ã£¿
·ÖÎö £¨1£©ÓÉÒÑÖª$A=\frac{{{f_{max}}-{f_{min}}}}{2}=\frac{5}{2}$£¬$b=\frac{{{f_{max}}+{f_{min}}}}{2}=5$£¬T=12£¬´Ó¶øÇó³ö$¦Ø=\frac{2¦Ð}{T}=\frac{¦Ð}{6}$£¬ÓÉ´ËÄÜÇó³öº¯Êýf£¨t£©=Asin£¨¦Øt+ϕ£©+bµÄ±í´ïʽ£®
£¨2£©»õ´¬ÐèÒªµÄ°²È«Ë®ÉîΪ4.25+2=6.25Ã×£¬µ±f£¨t£©¡Ý6.25ʱ¾Í¿ÉÒÔ½ø¸Û£¬ÓÉ´ËÄÜÇó³ö»õ´¬¿ÉÒÔÔÚ0ʱ½ø¸Û£¬Ô糿4ʱ³ö¸Û£»»òÔÚÖÐÎç12ʱ½ø¸Û£¬ÏÂÎç16ʱ³ö¸Û£¬Ã¿´Î¿ÉÒÔÔÚ¸Û¿ÚÍ£Áô4Сʱ×óÓÒ£®
½â´ð £¨±¾ÌâÂú·Ö12·Ö£©
½â£º£¨1£©Óɱí¸ñÖªfmax=7.5£¬fmin=2.5£¬¡£¨1·Ö£©
$A=\frac{{{f_{max}}-{f_{min}}}}{2}=\frac{5}{2}$£¬$b=\frac{{{f_{max}}+{f_{min}}}}{2}=5$¡£¨2·Ö£©
T=12£¬¡à$¦Ø=\frac{2¦Ð}{T}=\frac{¦Ð}{6}$£¬¡£¨4·Ö£©
¼´$f£¨t£©=\frac{5}{2}sin£¨\frac{¦Ð}{6}t+ϕ£©+5$
µ±t=2ʱ£¬$\frac{¦Ð}{6}•2+ϕ=\frac{¦Ð}{2}+2k¦Ð$£¬½âµÃ$ϕ=\frac{¦Ð}{6}+2k¦Ð$£¬
ÓÖ$|ϕ|£¼\frac{¦Ð}{2}$£¬¡à$ϕ=\frac{¦Ð}{6}$¡£¨6·Ö£©
¡à$f£¨t£©=\frac{5}{2}sin£¨\frac{¦Ð}{6}t+\frac{¦Ð}{6}£©+5$£®
£¨2£©»õ´¬ÐèÒªµÄ°²È«Ë®ÉîΪ4.25+2=6.25Ã×£¬
¡àµ±f£¨t£©¡Ý6.25ʱ¾Í¿ÉÒÔ½ø¸Û£®¡£¨7·Ö£©
Áî$\frac{5}{2}sin£¨\frac{¦Ð}{6}t+\frac{¦Ð}{6}£©+5¡Ý6.25$£¬µÃ$sin£¨\frac{¦Ð}{6}t+\frac{¦Ð}{6}£©¡Ý\frac{1}{2}$¡£¨8·Ö£©
¡à$\frac{¦Ð}{6}+2k¦Ð¡Ü\frac{¦Ð}{6}t+\frac{¦Ð}{6}¡Ü\frac{5¦Ð}{6}+2k¦Ð$£¬¡£¨9·Ö£©
½âµÃ12k¡Üt¡Ü4+12k£¬¡£¨10·Ö£©
ÓÖt¡Ê[0£¬24£©£¬¹Êk=0ʱ£¬t¡Ê[0£¬4]£»k=1ʱ£¬t¡Ê[12£¬16]¡£¨11·Ö£©
¼´»õ´¬¿ÉÒÔÔÚ0ʱ½ø¸Û£¬Ô糿4ʱ³ö¸Û£»»òÔÚÖÐÎç12ʱ½ø¸Û£¬ÏÂÎç16ʱ³ö¸Û£¬Ã¿´Î¿ÉÒÔÔÚ¸Û¿ÚÍ£Áô4Сʱ×óÓÒ£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÈýº¯ÊýÔÚÉú²úÉú»îÖеÄÓ¦Óã¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÈý½Çº¯ÊýÐÔÖʵĺÏÀíÔËÓã®
| A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | $\sqrt{3}$ | B£® | -$\sqrt{2}$ | C£® | ¡À$\sqrt{3}$ | D£® | ¡À$\sqrt{2}$ |
| A£® | 2$\sqrt{2}$ | B£® | 4$\sqrt{2}$ | C£® | 2 | D£® | 4 |
| A£® | $\overrightarrow{AB}+\overrightarrow{PA}+\overrightarrow{BQ}$ | B£® | $\overrightarrow{AB}+\overrightarrow{PC}+\overrightarrow{BA}-\overrightarrow{QC}$ | C£® | $\overrightarrow{QC}+\overrightarrow{CQ}-\overrightarrow{QP}$ | D£® | $\overrightarrow{PA}+\overrightarrow{AB}-\overrightarrow{BQ}$ |