题目内容
10.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,且双曲线与抛物线x2=-4$\sqrt{3}$y的准线交于A,B,S△OAB=$\sqrt{3}$,则双曲线的实轴长( )| A. | 2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 2 | D. | 4 |
分析 双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,可得$\sqrt{2}$=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$,a=b.抛物线x2=-4$\sqrt{3}$y的准线为:y=$\sqrt{3}$.代入双曲线方程可得A,B的坐标,|AB|.利用S△OAB=$\sqrt{3}$即可得出.
解答 解:双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,
∴$\sqrt{2}$=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$,可得a=b.
抛物线x2=-4$\sqrt{3}$y的准线为:y=$\sqrt{3}$.
代入双曲线方程可得:$\frac{3}{{a}^{2}}-\frac{{x}^{2}}{{a}^{2}}=1$,
解得x=±$\sqrt{3-{a}^{2}}$.
∴|AB|=2$\sqrt{3-{a}^{2}}$.
∴S△OAB=$\sqrt{3}$=$\frac{1}{2}|AB|$×$\sqrt{3}$=$\sqrt{3-{a}^{2}}$×$\sqrt{3}$,
解得a2=2,
∴a=$\sqrt{2}$.
则双曲线的实轴长为2$\sqrt{2}$.
故选:A.
点评 本题考查了圆锥曲线的标准方程及其性质、三角形的面积计算公式,考查了数形结合方法、计算能力,属于中档题.
练习册系列答案
相关题目
5.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+ϕ)+b$(A,ω>0,|ϕ|<\frac{π}{2})$来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+ϕ)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?
| 时刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
| 水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
(1)根据以上数据,求出函数f(t)=Asin(ωt+ϕ)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?
2.阅读程序框图,则该程序运行后输出的k的值是( )

| A. | 3 | B. | 4 | C. | 5 | D. | 6 |