题目内容
13.设φ∈R,则“f(x)=cos(x+φ),x∈R为偶函数”是“φ=0”的( )| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 f(x)=cos(x+φ),x∈R为偶函数,可得φ=kπ(k∈Z),即可得出.
解答 解:f(x)=cos(x+φ),x∈R为偶函数,可得φ=kπ(k∈Z),
∴“f(x)=cos(x+φ),x∈R为偶函数”是“φ=0”的必要不充分条件.
故选:B.
点评 本题考查了三角函数的图象与性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
5.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+ϕ)+b$(A,ω>0,|ϕ|<\frac{π}{2})$来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+ϕ)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?
| 时刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
| 水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
(1)根据以上数据,求出函数f(t)=Asin(ωt+ϕ)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?
2.阅读程序框图,则该程序运行后输出的k的值是( )

| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
3.若$sin(π+α)=\frac{1}{3}$,则sinα=( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | 3 | D. | -3 |