题目内容

19.将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{2}$个单位,所得图象对应的函数(  )
A.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增B.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减
C.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增D.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减

分析 利用函数y=Asin(ωx+φ)的图象变换规律求得所得图象对应的解析式,再利用正弦函数的单调性,求得所得图象对应的函数的单调区间,即可得解.

解答 解:将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{2}$个单位长度,
得到y=2sin[2(x-$\frac{π}{2}$)+$\frac{π}{3}$]=2sin(2x-$\frac{2π}{3}$)的图象,
令2kπ-$\frac{π}{2}$≤2x-$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
可得函数的单调递增区间为:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
当k=0时,单调递增区间为:[$\frac{π}{12}$,$\frac{7π}{12}$],故A正确.
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网