题目内容
10.已知a,b,c分别为△ABC中角A,B,C的对边,函数$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.(1)求角A的大小;
(2)若a=2,求△ABC面积的最大值.
分析 (1)利用三角恒等变换求得f(A)的解析式,由f(A)=5求得 sin(2A+$\frac{π}{6}$) 的值,从而求得2A+$\frac{π}{6}$的值,可得A的值.
(2)利用余弦定理,基本不等式,求得bc的最大值,可得△ABC面积$\frac{1}{2}$bc•sinA的最大值.
解答 解:(1)由题意可得:$f(A)=3+2\sqrt{3}sinAcosA+2{cos^2}A=5$
=3+$\sqrt{3}$sin2A+cos2A+1=4+2sin(2A+$\frac{π}{6}$),
∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,∵A∈(0,π),
∴2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{13π}{6}$),∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,∴A=$\frac{π}{3}$.
(2)由余弦定理可得:$4={b^2}+{c^2}-2bccos\frac{π}{3}$,
即4=b2+c2-bc≥bc(当且仅当b=c=2时“=”成立),即bc≤4,
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}bc≤\frac{{\sqrt{3}}}{4}×4=\sqrt{3}$,
故△ABC面积的最大值是$\sqrt{3}$.
点评 本题主要考查三角恒等变换,余弦定理,基本不等式的应用,属于中档题.
练习册系列答案
相关题目
1.函数f(x)=$\frac{1}{1+{x}^{2}}$的值域是( )
| A. | {y|y≠0} | B. | (0,1] | C. | (0,1) | D. | [1,+∞) |
18.若a>b>0,c<d<0,则一定有( )
| A. | ad>bc | B. | ad<bc | C. | ac>bd | D. | ac<bd |
5.已知$\overrightarrow a=(4,-2),\overrightarrow b=(cosα,sinα)$且$\overrightarrow a⊥\overrightarrow b$,则$\frac{{{{sin}^3}α+{{cos}^3}α}}{sinα-cosα}$为( )
| A. | 2 | B. | $\frac{9}{5}$ | C. | 3 | D. | $-\frac{3}{5}$ |
15.若$cos(\frac{π}{2}-α)=\frac{{\sqrt{2}}}{3}$,则cos(π-2α)=( )
| A. | $\frac{2}{9}$ | B. | $\frac{5}{9}$ | C. | $-\frac{2}{9}$ | D. | $-\frac{5}{9}$ |
19.将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{2}$个单位,所得图象对应的函数( )
| A. | 在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增 | B. | 在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减 | ||
| C. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增 | D. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减 |