题目内容

10.已知a,b,c分别为△ABC中角A,B,C的对边,函数$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面积的最大值.

分析 (1)利用三角恒等变换求得f(A)的解析式,由f(A)=5求得 sin(2A+$\frac{π}{6}$) 的值,从而求得2A+$\frac{π}{6}$的值,可得A的值.
(2)利用余弦定理,基本不等式,求得bc的最大值,可得△ABC面积$\frac{1}{2}$bc•sinA的最大值.

解答 解:(1)由题意可得:$f(A)=3+2\sqrt{3}sinAcosA+2{cos^2}A=5$
=3+$\sqrt{3}$sin2A+cos2A+1=4+2sin(2A+$\frac{π}{6}$),
∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,∵A∈(0,π),
∴2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{13π}{6}$),∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,∴A=$\frac{π}{3}$.
(2)由余弦定理可得:$4={b^2}+{c^2}-2bccos\frac{π}{3}$,
即4=b2+c2-bc≥bc(当且仅当b=c=2时“=”成立),即bc≤4,
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}bc≤\frac{{\sqrt{3}}}{4}×4=\sqrt{3}$,
故△ABC面积的最大值是$\sqrt{3}$.

点评 本题主要考查三角恒等变换,余弦定理,基本不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网