题目内容
4.已知双曲线$\frac{x^2}{16}-\frac{y^2}{b^2}=1,(b>0)$实轴的一端点为A,虚轴的一端点为B,且|AB|=5,则该双曲线的方程为( )| A. | $\frac{x^2}{16}-\frac{y^2}{15}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{12}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{3}=1$ |
分析 求出双曲线实轴端点A与虚轴的一端点为B的坐标,利用距离求解即可.
解答 解:由题意不妨A(4,0),B(0,b),|AB|=5,
可得16+b2=25,解得b=3,
则该双曲线的方程为:$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}=1$.
故选:C.
点评 本题考查双曲线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
9.
如图,已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,点P在第一象限,且满足$\overrightarrow{|{F}_{2}P|}$=$\overrightarrow{a}$,($\overrightarrow{{F}_{1}P}+\overrightarrow{{F}_{1}{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,线段PF2与双曲线C交于点Q,若$\overrightarrow{{F}_{2}P}$=5$\overrightarrow{{F}_{2}Q}$,则双曲线C的渐近线方程为( )
| A. | y=±$\frac{\sqrt{5}}{5}x$ | B. | y=±$\frac{1}{2}x$ | C. | y=±$\frac{\sqrt{3}}{2}x$ | D. | y=±$\frac{\sqrt{3}}{3}x$ |
16.圆锥的轴截面SAB是边长为4的正三角形(S为顶点),O为底面中心,M为SO中点,动点P在圆锥底面内(包括圆周),若AM⊥MP,则点P形成的轨迹长度为( )
| A. | $\frac{\sqrt{7}}{3}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | $\frac{2}{5}\sqrt{7}$ | D. | $\sqrt{7}$ |
13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,则f(-2)=( )
| A. | -1 | B. | 0 | C. | $\frac{1}{4}$ | D. | 4 |