题目内容
7.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,且cos2B+cosB+cos(A-C)=1,则a+2c的最小值为$4\sqrt{2}$.分析 利用二倍角公式以及两角和与差的三角函数,结合正弦定理以及基本不等式求解即可.
解答 解:由cos2B+cosB+cos(A-C)=1
⇒1-2sin2B+cosB+cosAcosC+sinAsinC=1
⇒1-2sin2B-cosAcosC+sinAsinC+cosAcosC+sinAsinC=1
⇒sinAsinC=sin2B,
由正弦定理得到ac=b2,
而$a+2c≥2\sqrt{2ac}=2b\sqrt{2}$,
由b=2,可得${({a+2c})_{min}}=4\sqrt{2}$.
故答案为:$4\sqrt{2}$.
点评 本题考查两角和与差的三角函数,正弦定理基本不等式的应用,考查分析问题解决问题的能力.
练习册系列答案
相关题目
17.已知复数z1=3-i,z2=1+i,$\overline{{z}_{1}}$是z1的共轭复数,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$=( )
| A. | 1+i | B. | 1-i | C. | 2+i | D. | 2-i |
17.已知圆x2+y2+2x+4y-4=0,若圆上恰有3个点到直线y=-x+b的距离为1,则b的值为( )
| A. | $3-2\sqrt{2}$ | B. | $-3+2\sqrt{2}$ | C. | $-3±2\sqrt{2}$ | D. | $3±2\sqrt{2}$ |