题目内容
10.已知Sn是等差数列{an}的前n项和,若S6=6,S15=75,则数列$\left\{{\frac{S_n}{n}}\right\}$的前20项和为60.分析 由已知条件利用等差数列的前n项和公式列出方程组求出首项与公差,由此求出$\frac{{S}_{n}}{n}$=$\frac{4}{9}n-\frac{5}{3}$,从而利用分组求和法能求出数列$\left\{{\frac{S_n}{n}}\right\}$的前20项和.
解答 解:∵Sn是等差数列{an}的前n项和,若S6=6,S15=75,
∴$\left\{\begin{array}{l}{6{a}_{1}+\frac{6×5}{2}d=6}\\{15{a}_{1}+\frac{15×14}{2}d=75}\end{array}\right.$,解得a1=-$\frac{11}{9}$,d=$\frac{8}{9}$,
∴Sn=-$\frac{11n}{9}$+$\frac{n(n-1)}{2}×\frac{8}{9}$=$\frac{4{n}^{2}-15n}{9}$,
∴$\frac{{S}_{n}}{n}$=$\frac{4n-15}{9}$=$\frac{4}{9}n-\frac{5}{3}$,
∴数列$\left\{{\frac{S_n}{n}}\right\}$的前20项和:
S20=$\frac{4}{9}(1+2+3+…+20)-\frac{5}{3}×20$
=$\frac{4}{9}×\frac{20(1+20)}{2}-\frac{100}{3}$
=60.
故答案为:60.
点评 本题考查前列的前20项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
5.设函数y=f(x)定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,计算$S=f(\frac{1}{2015})+f(\frac{2}{2015})+…+f(\frac{4028}{2015})+f(\frac{4029}{2015})$的值( )
| A. | -8058 | B. | 8058 | C. | -8060 | D. | 8060 |
19.已知复数z=$\frac{{1+\sqrt{3}i}}{{\sqrt{3}+i}}$(i为虚数单位),则复数z的共扼复数为( )
| A. | $\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$ | B. | $\frac{{\sqrt{3}}}{2}+\frac{1}{2}i$ | C. | $\sqrt{3}-i$ | D. | $\sqrt{3}+i$ |
20.已知函数f(x)的图象与函数$g(x)={({\frac{1}{2}})^x}$的图象关于直线y=x对称,则f(x2-1)的单调减区间为( )
| A. | (-∞,1) | B. | (1,+∞) | C. | (0,1) | D. | (0,+∞) |