题目内容

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=1,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{13}$B.6C.$\sqrt{11}$D.5

分析 根据平面向量数量积的定义与模长公式,求模长|$\overrightarrow{a}$-$\overrightarrow{b}$|即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=1,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,
∴${(\overrightarrow{a}-\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$$•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=22-2×1+32=11,
∴|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{11}$.
故选:C.

点评 本题考查了平面向量数量积与模长公式的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网