题目内容
已知等比数列{an}满足:a2=4公比q=2,数列{bn}的前n项和为Sn,且Sn=
bn-
an+
(n∈N*).
(1)求数列{an}和数列{bn}的通项an和bn;
(2)设cn=
(n∈n*),证明:
+
+…+
<
.
| 4 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
(1)求数列{an}和数列{bn}的通项an和bn;
(2)设cn=
| bn |
| an |
| c1 |
| c2 |
| c2 |
| c3 |
| cn |
| cn+1 |
| n |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件得an=a2qn-2=2n,所以Sn=
bn-
(2n-1),由此能推导出数列{bn+2n}是首项为b1+2=4,公比为4的等比数列,从而得到bn=4n-2n.
(2)由cn=
,得cn=
=2n-1,所以
=
<
,由此能证明
+
+…+
<
.
| 4 |
| 3 |
| 2 |
| 3 |
(2)由cn=
| bn |
| an |
| 4n-2n |
| 2n |
| ||
| ck+1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
| c1 |
| c2 |
| c2 |
| c3 |
| cn |
| cn+1 |
| n |
| 2 |
解答:
(1)解:由a2=4,q=2得,
an=a2qn-2=2n,(2分)
∵Sn=
bn-
an+
(n∈N*),
∴Sn=
bn-
(2n-1),(n∈N*),
则当n≥2时,bn=Sn-Sn-1=
bn-
(2n-1)-
bn-1+
(2n-1-1),(4分)
∴bn-2n+1-4bn-1+2n=0,(5分)
∴bn+2n=4(bn-1+2n-1),(7分)
∵b1=S1=
b1-
×1,∴b1=2,(8分)
∴数列{bn+2n}是首项为b1+2=4,公比为4的等比数列,(9分)
∴bn+2n=4×4n-1=4n,∴bn=4n-2n.(10分)
(2)证明:由cn=
,得cn=
=2n-1,(11分)
∵
=
=
<
,k=1,2,3,…,n.(13分)
∴
+
+…+
<
.(14分)
an=a2qn-2=2n,(2分)
∵Sn=
| 4 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
∴Sn=
| 4 |
| 3 |
| 2 |
| 3 |
则当n≥2时,bn=Sn-Sn-1=
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
∴bn-2n+1-4bn-1+2n=0,(5分)
∴bn+2n=4(bn-1+2n-1),(7分)
∵b1=S1=
| 4 |
| 3 |
| 2 |
| 3 |
∴数列{bn+2n}是首项为b1+2=4,公比为4的等比数列,(9分)
∴bn+2n=4×4n-1=4n,∴bn=4n-2n.(10分)
(2)证明:由cn=
| bn |
| an |
| 4n-2n |
| 2n |
∵
| ||
| ck+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
∴
| c1 |
| c2 |
| c2 |
| c3 |
| cn |
| cn+1 |
| n |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目
函数f(x)=
的值域是( )
| 1-x2012 |
| 1+x2012 |
| A、[-1,1] |
| B、(-1,1] |
| C、[-1,1) |
| D、(-1,1) |