题目内容
求值:2log212-log29= .
考点:对数的运算性质
专题:函数的性质及应用
分析:根据对数的运算性质计算即可
解答:
解:2log212-log29=log2
=log216=4log22=4
故答案为:4
| 122 |
| 9 |
故答案为:4
点评:本题考查了对数的运算性质,属于基础题
练习册系列答案
相关题目
已知数列{an}、{bn},“
an=A,
bn=B”是“
(an+bn)=A+B”成立的( )
| lim |
| n→∞ |
| lim |
| n→∞ |
| lim |
| n→∞ |
| A、充分非必要条件 |
| B、必要非充分条件 |
| C、充要条件 |
| D、既非充分又非必要条件 |
设数列{an}(n∈N*)是公差为d的等差数列,若a2=4,a4=6,则d=( )
| A、4 | B、3 | C、2 | D、1 |
已知f(x)=
x2+2xf′(2014)+2014lnx,则f′(2014)=( )
| 1 |
| 2 |
| A、2015 | B、-2015 |
| C、2014 | D、-2014 |
下列算式正确的是( )
| A、26+22=28 |
| B、26-22=24 |
| C、26×22=28 |
| D、26÷22=23 |
已知集合M={x|2x≥1},N={x||x|≤2},则M∪N=( )
| A、[1,2] |
| B、[-2,+∞) |
| C、[0,2] |
| D、(0,2) |