题目内容

11.已知集合A={x|x2-3x+2≥0},B={x|x≥t}.若A∪B=A,则实数t的取值范围为[2,+∞).

分析 集合A={x|x2-3x+2≥0}=(-∞,1]∪[2,+∞),由A∪B=A,可得B⊆A,即可得出.

解答 解:集合A={x|x2-3x+2≥0}=(-∞,1]∪[2,+∞),
B={x|x≥t}.
∵A∪B=A,
∴B⊆A,
∴t≥2.
则实数t的取值范围是[2,+∞).
故答案为:[2,+∞).

点评 本题考查了一元二次不等式的解法、集合之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网