题目内容

19.已知函数f(x)=2|x+a|+|x-$\frac{1}{a}$|(a≠0).
(1)当a=-1时,解不等式f(x)<4;
(2)求函数g(x)=f(x)+f(-x)的最小值.

分析 (1)求出函数的分段函数的形式,解各个区间上的x的范围,取并集即可;(2)根据绝对值的性质求出g(x)的最小值即可.

解答 解:(1)a=1时,f(x)=2|x+1|+|x-1|=$\left\{\begin{array}{l}{3x+1,x≥1}\\{x+3,-1≤x<1}\\{-3x-1,x<-1}\end{array}\right.$,
解下列不等式:
$\left\{\begin{array}{l}{3x+1<4}\\{x≥1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x+3<4}\\{-1≤x<1}\end{array}\right.$,解得:-1≤x<1,
$\left\{\begin{array}{l}{-3x-1<4}\\{x<-1}\end{array}\right.$,解得:-$\frac{5}{3}$<x<-1,
综上,不等式的解集是{x|-$\frac{5}{3}$<x<1};
(2)g(x)=f(x)+f(-x)=2|x+a|+|x-$\frac{1}{a}$|+2|x-a|+|x+$\frac{1}{a}$|
=2(|x+a|+|a-x|)+(|$\frac{1}{a}$-x|+|x+$\frac{1}{a}$|)
≥2(|x+a+a-x|)+|$\frac{1}{a}$-x+x+$\frac{1}{a}$|=4|a|+2|$\frac{1}{a}$|≥2$\sqrt{2}$,
当且仅当2|a|=|$\frac{1}{a}$|即a=±$\frac{\sqrt{2}}{2}$且-$\frac{\sqrt{2}}{2}$≤x≤$\frac{\sqrt{2}}{2}$时,取g(x)的最小值4$\sqrt{2}$.

点评 本题考查了解绝对值不等式问题,考查绝对值的性质以及分类讨论思想,在一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网