题目内容

2.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若a=2,b=1,B=29°,则此三角形解的情况是(  )
A.无解B.有一解C.有两解D.有无数解

分析 利用正弦定理可求得sinA,从而可判断此三角形解的情况.

解答 解:∵△ABC中,a=2,b=1,B=29°,
∴由正弦定理得:sinA=2sin29°<2sin30°=1,
又b<a,
∴29°<A<90°或90°<A<151°,
故此三角形有两解.
故选:C.

点评 本题考查三角形的形状判断,着重考查正弦定理的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网