题目内容

14.曲线y=2x2-x在点(1,1)处的切线方程为(  )
A.x-y+2=0B.3x-y+2=0C.x-3y-2=0D.3x-y-2=0

分析 欲求曲线y=2x2-x在点(1,1)处的切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答 解:∵y=f(x)=2x2-x,
∴f'(x)=4x-1,当x=1时,f'(1)=3得切线的斜率为3,所以k=3;
所以曲线在点(1,1)处的切线方程为:
y-1=3(x-1),即3x-y-2=0.
故选D.

点评 本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网