题目内容
14.曲线y=2x2-x在点(1,1)处的切线方程为( )| A. | x-y+2=0 | B. | 3x-y+2=0 | C. | x-3y-2=0 | D. | 3x-y-2=0 |
分析 欲求曲线y=2x2-x在点(1,1)处的切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
解答 解:∵y=f(x)=2x2-x,
∴f'(x)=4x-1,当x=1时,f'(1)=3得切线的斜率为3,所以k=3;
所以曲线在点(1,1)处的切线方程为:
y-1=3(x-1),即3x-y-2=0.
故选D.
点评 本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关题目
5.设i为虚数单位,复数$\frac{a+2i}{1+i}$为纯虚数,则实数a的值为( )
| A. | -1 | B. | 1 | C. | -2 | D. | 2 |
2.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若a=2,b=1,B=29°,则此三角形解的情况是( )
| A. | 无解 | B. | 有一解 | C. | 有两解 | D. | 有无数解 |
19.设函数f(x)=ex(sinx-cosx)(0≤x≤2016π),则函数f(x)的各极大值之和为( )
| A. | $\frac{{{e^π}(1-{e^{2017π}})}}{{1-{e^{2π}}}}$ | B. | $\frac{{{e^π}(1-{e^{1009π}})}}{{1-{e^π}}}$ | ||
| C. | $\frac{{{e^π}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$ | D. | $\frac{{{e^π}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$ |
3.已知α,β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,则2α-β的值是( )
| A. | -$\frac{π}{4}$ | B. | -$\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |