题目内容

在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.
(Ⅰ)求A的大小;
(Ⅱ)如果cosB=
6
3
,b=2,求a的值.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(Ⅰ)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,即可确定出A的大小;
(Ⅱ)由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由sinA,b的值,利用正弦定理即可求出a的值.
解答: 解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
1
2

又∵A∈(0,π),
∴A=
π
3

(Ⅱ)∵cosB=
6
3
,B∈(0,π),
∴sinB=
1-cos2B
=
3
3

由正弦定理
a
sinA
=
b
sinB
,得a=
bsinA
sinB
=
3
2
3
3
=3.
点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网