题目内容
13.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11的展开式中,x3的系数是( )| A. | 220 | B. | 165 | C. | 66 | D. | 55 |
分析 利用数列求和,然后利用二项式定理的性质,求解即可.
解答 解:根据等比数列求和公式,$(1+x)+{(1+x)^2}+{(1+x)^3}+…+{(1+x)^{11}}=(1+x)\frac{{1-{{(1+x)}^{11}}}}{1-(1+x)}=\frac{{{{(1+x)}^{12}}-x-1}}{x}$,
故仅需求出分子中含x3的系数即可,
在(1+x)12中,含x3项的系数为$C_{12}^3=\frac{12×11×10}{3×2×1}=220$.
故选:A.
点评 本题考查数列求和,二项式定理的应用,考查计算能力.
练习册系列答案
相关题目
3.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.
| 月份i | 7 | 8 | 9 | 10 | 11 | 12 |
| 销售单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.
1.
某出版社检验某册书的成本费(单位:元)与印刷数(单位:千册)之间的关系,经统计得到数据(表一)并对其作初步的处理,得到如图所示的散点图及一些统一量的值(表二).
表一
表二
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}$wi
(1)根据散点图可知更适宜作成本费与印刷册数的回归方程类型,试依据表中数据求出关于的回归方程(结果精确到0.01);
(2)从已有十组数据的前五组数据中任意抽取两组数据,求抽取的两组数据中有一组数据其预测值与实际值之差的绝对值超过0.02的概率.
附:对于一组数据(u1,v1),(u2,v2)…,(un,vn),其回归直线v=$\widehat{α}$+$\widehat{β}$u的斜估计分别为
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$$-\widehat{β}$$\overline{u}$.
表一
| x | 1 | 2 | 3 | 5 | 7 | 10 | 11 | 20 | 25 | 30 |
| y | 9.02 | 5.27 | 4.06 | 3.03 | 2.59 | 2.28 | 2.21 | 1.89 | 1.80 | 1.75 |
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{10}$(xi$-\overline{x}$)2 | $\sum_{i=1}^{10}$(wi$-\overline{w}$)2 | $\sum_{i=1}^{10}$(xi$-\overline{x}$)(yi$-\overline{y}$) | $\sum_{i=1}^{10}$(wi$-\overline{w}$)(yi$-\overline{y}$) |
| 11.4 | 3.39 | 0.249 | 934.4 | 934.4 | -139.03 | 6.196 |
(1)根据散点图可知更适宜作成本费与印刷册数的回归方程类型,试依据表中数据求出关于的回归方程(结果精确到0.01);
(2)从已有十组数据的前五组数据中任意抽取两组数据,求抽取的两组数据中有一组数据其预测值与实际值之差的绝对值超过0.02的概率.
附:对于一组数据(u1,v1),(u2,v2)…,(un,vn),其回归直线v=$\widehat{α}$+$\widehat{β}$u的斜估计分别为
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$$-\widehat{β}$$\overline{u}$.
8.若存在两个正实数x,y使得等式3x+a(y-2ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是( )
| A. | (-∞,0) | B. | (0,$\frac{3}{e}$] | C. | [$\frac{3}{e}$,+∞) | D. | (-∞,0)∪[$\frac{3}{e}$,+∞) |
9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的焦点在y轴上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},则这样的椭圆有( )
| A. | 12个 | B. | 20个 | C. | 24个 | D. | 35个 |
6.方程${C}_{28}^{x}$=${C}_{28}^{3x-8}$的解为( )
| A. | 4 或9 | B. | 9 | C. | 4 | D. | 5 |
7.已知条件p:a≤1,条件q:-1≤a≤1,则p是q的( )
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |