题目内容
9.已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=a1x+m与在y轴上的截距为1的直线x+2y-d=0垂直,则数列{$\frac{1}{{S}_{n}}$}的前100项的和为$\frac{100}{101}$.分析 直线y=a1x+m与在y轴上的截距为1的直线x+2y-d=0垂直,可得${a}_{1}×(-\frac{1}{2})$=-1,$\frac{d}{2}$=1,解得a1,d.再利用等差数列的前n项和公式与“裂项求和”方法即可得出.
解答 解:∵直线y=a1x+m与在y轴上的截距为1的直线x+2y-d=0垂直,
∴${a}_{1}×(-\frac{1}{2})$=-1,$\frac{d}{2}$=1,
解得a1=2,d=2.
∴Sn=2n+$\frac{n(n-1)}{2}×2$=n2+n.
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴数列{$\frac{1}{{S}_{n}}$}的前100项的和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{100}-\frac{1}{101})$
=1-$\frac{1}{101}$=$\frac{100}{101}$.
故答案为:$\frac{100}{101}$.
点评 本题考查了“裂项求和方法”、等差数列通项公式及其求和公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.已知O为坐标原点,F是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点,A,B分别为双曲线C的左、右顶点,P为双曲线C上的一点,且PF⊥x轴,过点A的直线l与线段PF交于M,与y轴交于点E,直线BM与y轴交于点N,若|OE|=3|ON|,则双曲线C的离心率为( )
| A. | $\frac{4}{3}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
14.
2017年1月1日,作为贵阳市打造“千园之城”27个示范性公元之一的泉湖公园正式开园,元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放,现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列2×2列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考公式与数据:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)根据条件完成下列2×2列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
| 愿意 | 不愿意 | 总计 | |
| 男生 | |||
| 女生 | |||
| 总计 |
参考公式与数据:
| P(K2≥k0) | 0.1 | 0.05 | 0.025 | 0.01 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
1.定义在R上的函数f(x),满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有( )
| A. | f(x1)≥f(x2) | B. | f(x1)=f(x2) | C. | f(x1)>f(x2) | D. | f(x1)≤f(x2) |
5.对数列{an},{bn},若区间[an,bn]满足下列条件:
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是( )
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是( )
| A. | ${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$ | B. | ${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$ | ||
| C. | ${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$ | D. | ${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$ |