题目内容

5.对数列{an},{bn},若区间[an,bn]满足下列条件:
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是(  )
A.${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$B.${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$
C.${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$D.${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$

分析 直接利用已知条件,判断选项是否满足两个条件即可.

解答 解:由题意,对于A,${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$,an+1<an,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以A不正确;
对于B,an+1<an,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以B不正确;
对于C,∵an+1>an,bn>bn+1,∴[an+1,bn+1]?[an,bn](n∈N*)成立,并且$\lim_{n→+∞}({{b_n}-{a_n}})=0$,所以C正确;
对于D,∵an+1<an,bn>bn+1,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以D不正确;
故选:C.

点评 本题考查数列的极限,数列的单调性的应用,考查分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网