ÌâÄ¿ÄÚÈÝ

15£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖá·Ç¸º°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔòÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$ºó£¬µÃµ½µÄÇúÏßÊÇ£¨¡¡¡¡£©
A£®Ö±ÏßB£®ÍÖÔ²C£®Ë«ÇúÏßD£®Ô²

·ÖÎö ½«¼«×ø±ê·½³Ì¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$»¯ÎªÆÕͨ·½³Ì£¬ÀûÓÃÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$ºó£¬¼´¿ÉÅжϣ®

½â´ð ½â£º¼«×ø±ê·½³Ì¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$£¬
¿ÉµÃ£º3y2+4x2=12£¬¼´$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$£¬
ÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$£¬¿ÉµÃ$\left\{\begin{array}{l}{2x¡ä=x}\\{\sqrt{3}y¡ä=y}\end{array}\right.$£º´øÈëÇúÏßC¿ÉµÃ£º$\frac{x{¡ä}^{2}}{\frac{3}{4}}+\frac{y{¡ä}^{2}}{\frac{4}{3}}=1$£¬
¡àÉìËõ±ä»»µÃµ½µÄÇúÏßÊÇÍÖÔ²£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»»ÒÔ¼°ÉìËõ±ä»»µÄ×ö·¨£®ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø