ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$£¬ÒÔ¼«µãΪԵ㣬¼«ÖáΪxÖá·Ç¸º°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔòÇúÏßC¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$ºó£¬µÃµ½µÄÇúÏßÊÇ£¨¡¡¡¡£©| A£® | Ö±Ïß | B£® | ÍÖÔ² | C£® | Ë«ÇúÏß | D£® | Ô² |
·ÖÎö ½«¼«×ø±ê·½³Ì¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$»¯ÎªÆÕͨ·½³Ì£¬ÀûÓÃÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$ºó£¬¼´¿ÉÅжϣ®
½â´ð ½â£º¼«×ø±ê·½³Ì¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$£¬
¿ÉµÃ£º3y2+4x2=12£¬¼´$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$£¬
ÇúÏßC¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$£¬¿ÉµÃ$\left\{\begin{array}{l}{2x¡ä=x}\\{\sqrt{3}y¡ä=y}\end{array}\right.$£º´øÈëÇúÏßC¿ÉµÃ£º$\frac{x{¡ä}^{2}}{\frac{3}{4}}+\frac{y{¡ä}^{2}}{\frac{4}{3}}=1$£¬
¡àÉìËõ±ä»»µÃµ½µÄÇúÏßÊÇÍÖÔ²£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»»ÒÔ¼°ÉìËõ±ä»»µÄ×ö·¨£®ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÏÂÁÐÏòÁ¿×éÖУ¬ÄÜ×÷ÎªÆ½ÃæÄÚËùÓÐÏòÁ¿µÄ»ùµ×µÄÊÇ£¨¡¡¡¡£©
| A£® | $\overrightarrow{a}$=£¨0£¬0£©£¬$\overrightarrow{b}$=£¨1£¬-2£© | B£® | $\overrightarrow{a}$=£¨-1£¬2£©£¬$\overrightarrow{b}$=£¨5£¬7£© | C£® | $\overrightarrow{a}$=£¨3£¬5£©£¬$\overrightarrow{b}$=£¨6£¬10£© | D£® | $\overrightarrow{a}$=£¨2£¬-3£©£¬$\overrightarrow{b}$=£¨4£¬-6£© |
5£®¹ýÈý¸öµãA£¨1£¬3£©£¬B£¨4£¬2£©£¬C£¨1£¬-1£©µÄÔ²½»yÖáÓÚM£¬NÁ½µã£¬Ôò|MN|=£¨¡¡¡¡£©
| A£® | 2$\sqrt{6}$ | B£® | 3$\sqrt{6}$ | C£® | 2 | D£® | 5$\sqrt{6}$ |