题目内容
8.已知(tanα-3)(sinα+cosα+3)=0,求值:(1)$\frac{4sinα+2cosα}{5cosα+3sinα}$
(2)$2+\frac{2}{3}{sin^2}α+\frac{1}{4}{cos^2}α$.
分析 (1)先求得tanα的值,再利用同角三角函数的基本关系,求得要求式子的值.
(2)利用同角三角函数的基本关系,求得要求式子的值.
解答 解:(1)∵(tanα-3)(sinα+cosα+3)=0,∴tanα=3,
∴$\frac{4sinα+2cosα}{5cosα+3sinα}$=$\frac{4tanα+2}{5+3tanα}$=$\frac{12+2}{5+9}$=1.
(2)$2+\frac{2}{3}{sin^2}α+\frac{1}{4}{cos^2}α$=$\frac{\frac{8}{3}{•sin}^{2}α+\frac{9}{4}{•cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{\frac{8}{3}{•tan}^{2}α+\frac{9}{4}}{{tan}^{2}α+1}$=$\frac{24+\frac{9}{4}}{9+1}$=$\frac{21}{8}$.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关题目
19.已知f(x)=xn,若f′(-1)=3,则n的值为( )
| A. | 3 | B. | -4 | C. | 5 | D. | -5 |
18.设$α∈(0,\frac{π}{2}),β∈(0,\frac{π}{4})$,且tanα=$\frac{cosβ+sinβ}{cosβ-sinβ}$,则下列正确的是( )
| A. | $2α-β=\frac{π}{4}$ | B. | $2α+β=\frac{π}{4}$ | C. | $α-β=\frac{π}{4}$ | D. | $α+β=\frac{π}{4}$ |