题目内容
17.家共一鹿适尽,问城中家几何?”意思是有100头鹿,每户分1头还有
剩余;再每3户共分1头,正好分完,问共有多少户人家?设计框图如
下,则输出的值是( )
| A. | 74 | B. | 75 | C. | 76 | D. | 77 |
分析 由题意,输出的值是100÷(1+$\frac{1}{3}$),计算可得结论
解答 解:由题意,输出的值是100÷(1+$\frac{1}{3}$)=100÷$\frac{4}{3}$=75.
故选:B.
点评 本题考查了程序框图的应用问题,解决此题关键是明白每户人家前后共分到1+$\frac{1}{3}$只鹿,进而根据求一个数里面有几个另一个数,用除法计算得解,是基础题.
练习册系列答案
相关题目
7.执行如图所示的程序框图,若输出的结果是$\frac{99}{199}$,则判断框内应填的内容是( )

| A. | n≤97 | B. | n≤98 | C. | n≤99 | D. | n≤100 |
12.第17届亚运会于2014年9月19日至10月4日在韩国仁川进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成以下2×2列联表:
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?参考公式:K2=$\frac{n(ad-b{c)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
(1)根据以上数据完成以下2×2列联表:
| 喜爱运 动 | 不喜爱运动 | 总计 | |
| 男 | 10 | 16 | |
| 女 | 6 | 14 | |
| 总计 | 30 |
(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?参考公式:K2=$\frac{n(ad-b{c)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
| k0 | 0.708 | 1.323 | 2.706 | 6.635 |