题目内容
(本小题满分12分)如图,已知在直三棱柱中, ,,点D是线段的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)当三棱柱的体积最大时,求直线与平面所成角的正弦值.
已知函数
(1)求函数的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边所对的角,若,求的最大值.
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(Ⅰ)解不等式;
(Ⅱ)若存在实数,使得,求实数的取值范围.
给出下列关于互不相同的直线、、和平面、的四个命题:
①若,,点,则与不共面;
② 若、是异面直线,,,且,,则;
③ 若,,,则;
④ 若,,,,,则,
其中为真命题的是( )
A.①③④ B.②③④ C.①②④ D.①②③
(本小题满分10分)选修:不等式选讲
已知函数,
(Ⅰ)解关于的不等式;
(Ⅱ)若函数的图像恒在函数图像的上方,求实数的取值范围.
已知,,且与的夹角为,则
下列程序框图中,则输出的值是( )
A. B. C. D.
展开式中的常数项为 .
(本小题满分12分)过椭圆的右焦点作斜率的直线交椭圆于两点,且与共线.
(1)求椭圆的离心率;
(2)设为椭圆上任意一点,且,证明:为定值。