题目内容

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,a>0,b>0$的离心率e=2,左,右焦点分别为F1,F2,点P在双曲线的右支上,则$\frac{{|P{F_1}|}}{{|P{F_2}|}}$的最大值为3.

分析 由题意,设|PF1|=m,|PF2|=n,则m-n=2a,m+n≥2c,$\frac{m+n}{m-n}$≥$\frac{c}{a}$=2,m≤3n,即可得出结论.

解答 解:由题意,设|PF1|=m,|PF2|=n,则m-n=2a,m+n≥2c,
∴$\frac{m+n}{m-n}$≥$\frac{c}{a}$=2,∴m≤3n,
∴$\frac{m}{n}$≤3,
∴$\frac{{|P{F_1}|}}{{|P{F_2}|}}$的最大值为3,
故答案为3.

点评 本题考查双曲线的定义与方程,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网