题目内容

设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f(x)在区间[a,b]上的最大值.
考点:抽象函数及其应用
专题:综合题,函数的性质及应用
分析:由已知中对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,我们可以得到设x=y=0,则f(0)=0,再令y=-x可得f(-x)=-f(x),进而根据函数奇偶性的定义得到结论f(x)为奇函数,再利用函数单调性的定义由x>0时,有f(x)>0,结合对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,判断出函数的单调性,进而求f(x)在区间[a,b]上的最大值.
解答: 解:令x=y=0知f(0)=0,
令x+y=0知f(x)+f(-x)=0,
∴f(x)为奇函数.
任取两个自变量x1,x2且-∞<x1<x2<+∞,
则f(x2)-f(x1)=f(x2-x1),
∵x2>x1,∴x2-x1>0知f(x2-x1)<0,即f(x2)-f(x1)<0,
故f(x2)<f(x1),
∴f(x)在(-∞,+∞)上是减函数,
∴f(x)在区间[a,b]上的最大值为f(a).
点评:本题考查的知识点是抽象函数,函数单调性与性质,是对函数性质及应用的综合考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网