题目内容
把一枚硬币连续抛掷3次,至少有一次正面向上的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:相互独立事件的概率乘法公式
专题:计算题,概率与统计
分析:本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,根据对立事件的概率公式得到结果.
解答:
解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,
满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,
∴至少一次正面向上的概率是1-
=
,
故选:D.
试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,
满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,
∴至少一次正面向上的概率是1-
| 1 |
| 8 |
| 7 |
| 8 |
故选:D.
点评:本题考查等可能事件的概率,本题解题的关键是对于比较复杂的事件求概率时,可以先求对立事件的概率.
练习册系列答案
相关题目
对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1:ax+3y+6=0,l2:2x+(a+1)y+6=0,和圆C:x2+y2+2x=b2-1(b>0)的位置关系是“平行相交”,则b的取值范围为( )
A、(
| ||||||||||
B、(0,
| ||||||||||
C、(0,
| ||||||||||
D、(
|
已知一个四面体的一条棱长为
,其余棱长均为2,则这个四面体的体积为( )
| 6 |
| A、1 | ||
B、
| ||
C、2
| ||
| D、3 |
若二次函数f(x)=x2-ax+1的两零点分别在(0,1)和(1,2)区间内,则该命题成立的充要条件为( )
| A、a>2 | ||
B、a<
| ||
C、2<a<
| ||
D、a<2或a>
|
在极坐标系中,圆ρ=2sinθ的圆心的极坐标是( )
A、(1,
| ||
B、(1,-
| ||
| C、(1,0) | ||
| D、(1,π) |
若点p(tanα-sinα,sinα)在第三象限,则角α的终边必在( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
已知双曲线C的右焦点为F,过F的直线l与双曲线C交于不同两点A、B,且A、B两点间的距离恰好等于半焦距,若这样的直线l有且仅有两条,则双曲线C的离心率的取值范围为( )
A、(1,
| ||||
B、(1,
| ||||
| C、(2,+∞) | ||||
D、(1,
|
设函数f(x)的定义域为R,f(x)=
,且对任意的x∈R都有f(x+1)=f(x-1),若在区间[-1,5]上函数g(x)=f(x)-mx-m,恰有6个不同零点,则实数m的取值范围是( )
|
A、(
| ||||
B、(
| ||||
C、(0,
| ||||
D、(0,
|