题目内容

在平面直角坐标系xOy中,已知中心在坐标原点且关于坐标轴对称的椭圆C1的焦点在抛物线C2:y2=-4x的准线上,且椭圆C1的离心率为
1
2

(1)求椭圆C1的方程,
(2)若直线l与椭圆C1相切于第一象限内,且直线l与两坐标轴分别相交与A,B两点,试探究当三角形AOB的面积最小值时,抛物线C2上是否存在点到直线l的距离为
2
42
21
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由题意设椭圆C1的方程
x2
a2
+
y2
b2
=1
,(a>b>0),且
c=1
c
a
=
1
2
a2=b2+c2
,由此能求出椭圆C1的方程.
(2)设直线l的方程为y=kx+m(k<0,m>0)由
y=kx+m
x2
4
+
y2
3
=1
,得(3+4k2)x2+8kmx+4m2-12=0,由此利用根的判别式、韦达定理、点到直线距离公式、弦长公式能推导出抛物线C2上不存在点到直线l的距离为
2
42
21
解答: 解:(1)∵椭圆C1的焦点在抛物线C2:y2=-4x的准线上,且椭圆C1的离心率为
1
2

∴椭圆焦点在x轴上,设椭圆C1的方程:
x2
a2
+
y2
b2
=1
,(a>b>0),
c=1
c
a
=
1
2
a2=b2+c2
,解得a=2,b=
3

∴椭圆C1的方程为
x2
4
+
y2
3
=1

(2)∵直线l与椭圆C1相切于第一象限内,
∴直线l的斜率存在且小于零,
设直线l的方程为y=kx+m(k<0,m>0)
y=kx+m
x2
4
+
y2
3
=1
,得(3+4k2)x2+8kmx+4m2-12=0,
由题可知,△=0,
∴m2=4k2+3,
S△AOB=
1
2
|m•(-
m
k
)|=
1
2
|
4k2+3
k
|=
1
2
•(4|k|+
3
|k|
)≥2
3

4|k|=
3
|k|
k=-
3
2
时上式等号成立,
此时m=
6
,直线l为y=-
3
2
x+
6

设点D(-
y
2
0
4
y0)
为抛物线C2上任意一点,
则点D到直线l的距离为d=
|-
3
4
y
2
0
+2y0-2
6
|
7
=
|
3
y
2
0
-8y0+8
6
|
4
7

利用二次函数的性质知d≥
6
2
-4
21
=
2
42
(3-
2
)
21
2
42
21

∴抛物线C2上不存在点到直线l的距离为
2
42
21
点评:本题考查椭圆方程的求法,考查当三角形面积最小时满足条件的点是否存在的判断与求法,解题时要认真审题,注意根的判别式、韦达定理、点到直线距离公式、弦长公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网