题目内容

20.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=$\frac{1}{2}$CD=2,点M是线段EC的中点.
(1)求证:BM∥平面ADEF;
(2)求证:平面BDE⊥平面BEC;
(3)求平面BDM与平面ABF所成的角(锐角)的余弦值.

分析 (1)取DE的中点N,连结MN,AN.运用中位线定理和平行四边形的判断和性质,结合线面平行的判定定理,即可得证;
(2)运用面面垂直的性质定理和判定定理,即可得证;
(3)以D为原点,DA,DC,DE为x,y,z轴,建立空间的直角坐标系,求得A,B,C,D,E,M的坐标,运用向量垂直的条件,求得平面BDM和平面ABF的法向量,再由向量的夹角公式,计算即可得到所求值.

解答 (1)证明:取DE的中点N,连结MN,AN.
在△EDC中,M,N分别为EC,ED的中点,
则MN∥CD且$MN=\frac{1}{2}CD$.
由已知AB∥CD,$AB=\frac{1}{2}CD$,
得MN∥AB,且MN=AB,四边形ABMN为平行四边形,BM∥AN,
因为AN?平面ADEF,且BM?平面ADEF∴BM∥平面ADEF.
(2)证明:在正方形ADEF中,ED⊥AD.又平面ADEF⊥平面ABCD,
平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD.∴ED⊥BC.
在直角梯形ABCD中,AB=AD=2,CD=4,
得$BC=2\sqrt{2}$.在△BCD中,$BD=BC=2\sqrt{2}$,CD=4,
可得BC⊥BD.又ED∩BD=D,故BC⊥平面BDE.
又BC?平面BEC,则平面BDE⊥平面BEC.
(3)解:如图,建立空间直角坐标系,
则A(2,0,0),B(2,2,0),C(0,4,0),
D(0,0,0),E(0,0,2).
因为点M是线段EC的中点,
则M(0,2,1),$\overrightarrow{DM}=({0,2,1})$,又$\overrightarrow{DB}=({2,2,0})$.
设$\overrightarrow n=({{x_1},{y_1},{z_1}})$是平面BDM的法向量,
则$\overrightarrow{DB}•\overrightarrow n=2{x_1}+2{y_1}=0$,$\overrightarrow{DM}•\overrightarrow n=2{y_1}+{z_1}=0$.
取x1=1,得y1=-1,z1=2,即得平面BDM的一个法向量为 $\overrightarrow n=({1,-1,2})$.
由题可知,$\overrightarrow{DA}=({2,0,0})$是平面ABF的一个法向量.
设平面BDM与平面ABF所成锐二面角为θ,
因此,$cosθ=|{\frac{{\overrightarrow{DA}•\overrightarrow n}}{{|{\overrightarrow{DA}}|•|{\overrightarrow n}|}}}|=|{\frac{2}{{2×\sqrt{1+1+4}}}}|=\frac{{\sqrt{6}}}{6}$.

点评 本题考查空间的线面位置关系的证明,以及空间二面角的求法,注意运用线面平行或垂直、面面垂直的判定定理和性质定理,考查运算和推理能力和空间想象能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网