题目内容

9.已知数列{an}满足a1=3,an+1•an-2•an+1=0 (n∈N*).
(1)求$\frac{1}{{a}_{2}-1}$,$\frac{1}{{a}_{3}-1}$,$\frac{1}{{a}_{4}-1}$的值;
(2)求{an}的通项公式.

分析 (1)化简可得an+1=2-$\frac{1}{an}$,n依次取值2,3,4求得;
(2)猜想{$\frac{1}{an-1}$}是等差数列,从而证明,从而写出$\frac{1}{an-1}$=$\frac{1}{2}$+n-1,从而解得.

解答 解:(1)由an+1an=2•an-1得an+1=2-$\frac{1}{an}$,
代入a1=3,n依次取值2,3,4,得
$\frac{1}{a2-1}$=$\frac{3}{2}$,$\frac{1}{a3-1}$=$\frac{5}{2}$,$\frac{1}{a4-1}$=$\frac{7}{2}$,
(2)猜想:{$\frac{1}{an-1}$}是等差数列.
证明:由an+1•an=2•an-1变形得,
(an+1-1)•(an-1)=-(an+1-1)+(an-1),
即$\frac{1}{an+1-1}$-$\frac{1}{an-1}$=1在n∈N*时恒成立,
所以{$\frac{1}{an-1}$}是等差数列.
由$\frac{1}{a1-1}$=$\frac{1}{2}$,所以$\frac{1}{an-1}$=$\frac{1}{2}$+n-1,
变形得an-1=$\frac{2}{2n-1}$,
所以an=$\frac{2n+1}{2n-1}$.

点评 本题考查了数列的性质,同时考查了整体思想与转化思想的应用,同时考查了归纳法的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网