题目内容
已知数列{an},a1=2,an+1=an+
,则通项an= .
| 1 |
| n(n+2) |
考点:数列递推式
专题:等差数列与等比数列
分析:由an+1-an=
(
-
),an=a1+a2-a1+a3-a2+…+an-an-1,利用累加求和法能求出通项an.
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:∵数列{an},a1=2,an+1=an+
,
∴an+1-an=
(
-
),
∴an=a1+a2-a1+a3-a2+…+an-an-1
=2+
(1-
+
-
+
-
+…+
-
)
=2+
(1+
-
-
)
=
-
-
.
故答案为:
-
-
.
| 1 |
| n(n+2) |
∴an+1-an=
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴an=a1+a2-a1+a3-a2+…+an-an-1
=2+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
=2+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 11 |
| 4 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
故答案为:
| 11 |
| 4 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累加法的合理运用.
练习册系列答案
相关题目