题目内容

已知
π
2
<α<π,且sin(π-α)=
4
5

(1)求
sin(2π+α)tan(π-α)cos(-π-α)
sin(
2
-α)cos(
π
2
+α)
的值;
(2)求
sin2α-cos2α
tan(α-
4
)
的值.
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:(1)利用三角函数的诱导公式进行化简即可得到结论.
(2)利用三角函数的诱导公式进行化简即可得到结论.
解答: 解:∵sin(π-α)=
4
5
,∴sinα=
4
5

π
2
<α<π
,∴cosα=-
3
5
tanα=-
4
3

(1)原式=
sinαtanαcosα
sinαcosα
=tanα=-
4
3

(2)原式=
2sinαcosα-2cos2α+1
tanα-1
tanα+1
=
4
5
×(-
3
5
)-2×
9
25
+1
-
4
3
-1
-
4
3
+1
=-
17
175
点评:本题主要考查三角函数的化简求值,利用三角函数的诱导公式是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网