题目内容

若a>1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则
1
m
+
1
n
的最小值为
 
考点:函数零点的判定定理,基本不等式
专题:函数的性质及应用
分析:构建函数F(x)=ax,G(x)=logax,h(x)=4-x,则h(x)与F(x),G(x)的交点A,B的横坐标分别为m、n,注意到F(x)=ax,G(x)=logax,关于直线y=x对称,可得m+n=4,再用“1”的代换,利用基本不等式,即可得出结论.
解答: 解:由题意,构建函数F(x)=ax,G(x)=logax,h(x)=4-x,
则h(x)与F(x),G(x)的交点A,B的横坐标分别为m、n.
注意到F(x)=ax,G(x)=logax,关于直线y=x对称,可以知道A,B关于y=x对称,
由于y=x与y=4-x交点的横坐标为2,∴m+n=4.
1
m
+
1
n
=
1
4
1
m
+
1
n
)(m+n)=
1
4
(2+
n
m
+
m
n
)≥
1
4
(2+2)=1,
当且仅当m=n=2时,等号成立,故
1
m
+
1
n
的最小值为1,
故答案为:1.
点评:本题考查函数的零点,考查基本不等式的运用,考查学生分析转化问题的能力,求出m+n=4,正确运用基本不等式是关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网