题目内容
17.已知抛物线x2=4y的焦点是F,直线$x-\sqrt{3}y+\sqrt{3}=0$交抛物线于A,B两点,且|AF|>|BF|,则$\frac{{|{AF}|}}{{|{BF}|}}$=( )| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
分析 先设点A,B的坐标,求出直线方程后与抛物线方程联立消去x得到关于y的一元二次方程,求出两根,再由抛物线的定义得到答案.
解答 解:设A(x1,y1)B(x2,y2)
联立直线与抛物线的方程,可得3y2-10y+3=0
解得:y1=3,y2=$\frac{1}{3}$,(y1>y2),
所以由抛物线的定义知$\frac{{|{AF}|}}{{|{BF}|}}$=$\frac{{y}_{1}+1}{{y}_{2}+1}$=$\frac{4}{\frac{4}{3}}$=3.
故选D.
点评 本题主要考查直线与抛物线的位置关系,抛物线定义的应用,属于中档题.
练习册系列答案
相关题目
7.已知a为函数f(x)=x3-3x的极小值点,则a=( )
| A. | -1 | B. | -2 | C. | 2 | D. | 1 |
12.已知点P(-3,5),Q(2,1),向量$\overrightarrow{m}$=(2λ-1,λ+1),若$\overrightarrow{PQ}$∥$\overrightarrow{m}$,则实数λ等于( )
| A. | $\frac{1}{13}$ | B. | $-\frac{1}{13}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
9.设x,y满足约束条件$\left\{\begin{array}{l}8x-y-4≤0\\ x+y+1≥0\\ y-4x≤0\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}+\frac{1}{b}$的最小值为( )
| A. | 5 | B. | $\frac{5}{2}$ | C. | $\frac{9}{2}$ | D. | 9 |
1.某种商品价格与该商品日需求量之间的几组对照数据如表:
(1)求y关x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程y=bx+a,其中b=$\frac{{x}_{1}{y}_{1}+{x}_{2}{y}_{2}+…{x}_{n}{y}_{n}-n\overline{x}\overline{y}}{{{x}_{1}}^{2}+{{x}_{2}}^{2}+…{{x}_{n}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.
| 价格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
| 日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程y=bx+a,其中b=$\frac{{x}_{1}{y}_{1}+{x}_{2}{y}_{2}+…{x}_{n}{y}_{n}-n\overline{x}\overline{y}}{{{x}_{1}}^{2}+{{x}_{2}}^{2}+…{{x}_{n}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.