题目内容
如图,正方体棱长为8,分别为中点,分别为棱、上动点,且.
(1)求长的取值范围;
(2)当取得最小值时,求证:与共面;并求出此时与的交点到直线的距离.
(2012秋•东台市校级期中)设数列{an}是首项为0的递增数列,,满足:对于任意的b∈[0,1),fn(x)=b总有两个不同的根,则{an}的通项公式为 .
(2015春•兰山区期中)已知,则sinθ﹣cosθ的值为( )
A. B. C. D.
(2015秋•信阳月考)已知集合M={x|≥1},N={y|y=1﹣x2},则M∩N=( )
A.(﹣∞,2] B.(0,1]
C.(0,2] D.[0,1]
椭圆,作直线交椭圆于两点,为线段的中点,为坐标原点,设直线的斜率为,直线的斜率为,.
(1)求椭圆的离心率;
(2)设直线与轴交于点,且满足,当的面积最大时,求椭圆的方程.
计算:
集合,,则集合的所有元素组成的图形的面积是( )
一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的侧面积是( )
A. B.
C. D.
(2011•安徽模拟)复数在复平面上对应的点位于( )
A.实轴上 B.虚轴上 C.第一象限 D.第二象限