题目内容

16.设数列{an}满足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{2n+1}$}的前n项和.

分析 (1)利用数列递推关系即可得出.
(2)$\frac{{a}_{n}}{2n+1}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$.利用裂项求和方法即可得出.

解答 解:(1)数列{an}满足a1+3a2+…+(2n-1)an=2n.
n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1).
∴(2n-1)an=2.∴an=$\frac{2}{2n-1}$.
当n=1时,a1=2,上式也成立.
∴an=$\frac{2}{2n-1}$.
(2)$\frac{{a}_{n}}{2n+1}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$.
∴数列{$\frac{{a}_{n}}{2n+1}$}的前n项和=$(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})$=1-$\frac{1}{2n+1}$=$\frac{2n}{2n+1}$.

点评 本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网