题目内容
已知数列{an}满足a1=
,
+
=(-1)n(n∈N*).
(1)求证数列{
-(-1)n}(n∈N*)是等比数列;
(2)设bn=
(n∈N*),求数列{bn}前n项和Sn;
(3)设cn=-2nanan+1,数列{cn}的前n项和为Tn,求证Tn<
(n∈N*).
| 1 |
| 2 |
| 1 |
| an+1 |
| 2 |
| an |
(1)求证数列{
| 1 |
| an |
(2)设bn=
| 1 |
| an2 |
(3)设cn=-2nanan+1,数列{cn}的前n项和为Tn,求证Tn<
| 1 |
| 3 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)
+
=(-1)n(n∈N*),变形为
-(-1)n+1=-2(
-(-1)n),利用等比数列的定义即可证明;
(2)利用等比数列的通项公式即可得出;
(3)利用“裂项求和”即可证明.
| 1 |
| an+1 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
(2)利用等比数列的通项公式即可得出;
(3)利用“裂项求和”即可证明.
解答:
(1)证明:∵
+
=(-1)n(n∈N*),
∴
-(-1)n+1=-2(
-(-1)n),
∴数列{
-(-1)n}(n∈N*)是等比数列;
(2)解:由(1)可得
-(-1)n=(
+1)(-2)n-1=3•(-2)n-1,
∴
=3(-2)n-1+(-1)n,
∴bn=
=[3×2n-1-1]2=9×4n-1-3×2n+1,
∴数列{bn}前n项和Sn=
-
+n=3×4n-3×2n+1+3+n.
(3)cn=-2nanan+1=
=
=
(
-
).
∴数列{cn}的前n项和为Tn=
[(
-
)+(
-
)+…+(
-
)]=
[
-
]<
.
| 1 |
| an+1 |
| 2 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
(2)解:由(1)可得
| 1 |
| an |
| 1 |
| a1 |
∴
| 1 |
| an |
∴bn=
| 1 |
| an2 |
∴数列{bn}前n项和Sn=
| 9(4n-1) |
| 4-1 |
| 3×2×(2n-1) |
| 2-1 |
(3)cn=-2nanan+1=
| 2n |
| [3×(-2)n-1+(-1)n][3×(-2)n+(-1)n+1] |
| 2n |
| (3×2n-1-1)(1-3×2n) |
| 2 |
| 3 |
| 1 |
| 3×2n-1-1 |
| 1 |
| 3×2n-1 |
∴数列{cn}的前n项和为Tn=
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 11 |
| 1 |
| 3×2n-1-1 |
| 1 |
| 3×2n-1 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3×2n-1 |
| 1 |
| 3 |
点评:本题考查了等比数列的定义及其通项公式、“裂项求和”,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
已知函数f(x)=
,则f(f(1))的值是( )
|
| A、9 | ||
B、
| ||
| C、-9 | ||
D、-
|
计算
(1-
)(1-
)(1-
)…(1-
)=( )
| lim |
| n→∞ |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|